a^2=176

Simple and best practice solution for a^2=176 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2=176 equation:



a^2=176
We move all terms to the left:
a^2-(176)=0
a = 1; b = 0; c = -176;
Δ = b2-4ac
Δ = 02-4·1·(-176)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*1}=\frac{0-8\sqrt{11}}{2} =-\frac{8\sqrt{11}}{2} =-4\sqrt{11} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*1}=\frac{0+8\sqrt{11}}{2} =\frac{8\sqrt{11}}{2} =4\sqrt{11} $

See similar equations:

| 65x+130=1235 | | 40*c=160 | | j+27=39 | | 6−2d=–4 | | 2−3m=–4 | | -6r+3=123 | | 3=r4− 1 | | 5(2x-1)=-5+ | | X(x/2)=392 | | 14−7y=0 | | 35.2-x=22.1 | | 7g+3=-95 | | 42x=x+1 | | 35.6-x=22.1 | | (D^3+5D)y=15 | | 101+145+95+(x+1)+x=900 | | 95+145+101+(x+1)+x=900 | | -11+4(5 | | -11+4(5 | | -11+4(5 | | 7.9=-x+9.4x+8.1 | | 3u2+22u–16=0 | | 2.8x-4.8-8.8=0 | | −3x2+6x=3 | | 3-2x=21-4x | | -8-2x/5+x/4-1=1-2x | | 8y+4=(4)(2y) | | 24+1v=9v | | x-1/3-2+x/2=x-3/2 | | 4-8y=(4)(2y) | | 3y+58=(4)(2y-3) | | 8x^+4x+2=x^ |

Equations solver categories